
Notes of Unit-3 

Race Condition in Operating Systems 
(OS) 

In this tutorial we are going to learn about Race Condition in Operating 
Systems. 

Today, we are going to learn about the most important concept in 
Operating Systems. The Race Condition is a condition which usually 
occurs in Multi Threading concept which occurs in an Operating System. 

The Race Condition usually occurs at the case of Tube Light which has 
multiple switches. This Tube Light with multiple switches is the biggest 
example for the Race Condition which has occurred in Operating Systems. 

The Race Condition also occurs in the case of processes also. If we do not 
take care of this Race Condition well then we might get stuck in a Deadlock 
too. 

Now, let us understand the basics of Multi Threading first. 

Multi Threading in Operating Systems (OS) 

Multi Threading is a procedure by which a task is divided into multiple 
single threads. These threads are executed one by one in a sequential or 
non sequential manner to complete the task. 

The same process or job can be carried out by a number of threads in 
multithreading where threads does the same process in other tasks where 
we have requirement of such kind of threads for task completion, or we can 
say that the task is being carried out by more than one thread. It is possible 
to multi tasked by using multithreading. 

There are three types of Threads in Multi Threading Concept. They are: 

1. Many to Many Multi Threading style 
2. Many to One Multi Threading style 



3. One to One Multi Threading style 

Race Condition in Operating Systems (OS) 

Race Condition in Multi Threading Scenario 

A race condition is a situation that develops when many threads share a 
resource or execute the same piece of code in a multithreaded context. 
Inappropriate handling of this might result in an unfavorable scenario where 
the output state depends on the threads execution order. 

Race Condition in Multi Processing Scenario 

The Race Condition is a situation that is developed when a device or 
system tries to do two or more operations simultaneously when, due to the 
nature of the device or system, the actions must be performed in the right 
order to be performed successfully; a race condition is an unpleasant 
circumstance that results. 

The most frequent associations of race with programming and computer 
science are these. When two computer program processes try to access 
the same resource simultaneously, they happen and disrupt the system. 

Race Condition in Critical Section Area Problem 

A race condition is a potential scenario that might happen within a critical 
section area. This occurs when different results from the execution of 
numerous threads in a crucial region are obtained depending on the 
execution order of the threads. 

If the critical section area is regarded as an atomic instruction, race 
conditions in certain areas can be avoided. Race problems can also be 
avoided by employing locks or atomic variables to properly synchronize 
threads. 

Race Condition is Inter Disciplinary approach. It can occur in both the 
concepts of Multi Threading, Process Execution, and Critical Section Area 
too. 



Examples of Race Condition: 

Example 1: Tube Light ON and OFF 

The Race Condition usually occurs at the case of Tube Light which has 
multiple switches. This Tube Light with multiple switches is the biggest 
example for the Race Condition which has occurred in Operating Systems. 

Explanation 

Consider a Tube Light, two switches. Let the two switches are connected to 
the Tube Light and the Tube Light is in OFF State. Here, if on switch 1 the 
tube light gets switched on. Then, if we on the switch 2 when switch 1 is in 
ON State, the Tube Light get switched off. But, both the switched present 
are in ON State and the Tube Light is in OFF State. 

Now, let us consider that the Tube Light is in OFF State and switch 1 and 
switch 2 are in OFF State. Now, if we turn ON both the switches at a time 
then the Tube Light would be ON State only. This is because of circuit 
breaker. One of the switch actions is tripped by the circuit breaker present 
in the circuit. This is to prevent the functioning of switch going irrelevant. 

What if same condition is occurred in the computer? Here, the ON and OFF 
Conditions gets replaced by Read and Write Operations. Here, the Tube 
Light is replaced with a computer. Just imagine what happens if we are re 
writing the data on the computer while the old data is being read. Because 
of this state, these conditions might occur: 

1. Errors and Faults in Newly written data 
2. Errors and Faults in Old written data 
3. The Computer might gets crashed 
4. The Data Corruption might occur. 
5. The Data Stored might not be in order. 

Race conditions result in inconsistent output and degrade our application's 
endurance and confidence. 

In operating systems, concurrency is achieved via threads. The capacity to 
carry out many operations concurrently is known as concurrency. 
Concurrency is achieved in the OS via threads. We may encounter 



circumstances where the threads processing the shared data provide 
different results each time if many threads access shared data without 
being synced with one another. 

Race Conditions Identification or Detection in 
Operating Systems (OS) 

The need for finding the Race Conditions is very important. If we fail to 
identify them, then we are going to lose so much data and data already 
present is also going to go corrupt. So, it is very important for the user and 
the computer to find out the occurrence of Race Condition in the Operating 
Systems (OS). 

Finding and detecting racial conditions is thought to be challenging. They 
are a semantic issue that might result from several potential coding errors. 
It is preferable to write code that avoids these issues from the outset. 

Tools for static and dynamic analysis are used by programmers to find race 
conditions. Without starting the software, static testing tools scan 
everything. However, they tends to generate a lot of inaccurate reports. 
Although dynamic analysis methods provide fewer false positives, they 
could miss race conditions that don't occur within the program itself. 

Data races, which happen when two threads simultaneously target the 
same memory region and at least one of them performs a write operation, 
can occasionally result in race conditions. Data races are simpler to spot 
than race conditions since they need particular circumstances to manifest. 
Data race scenarios are kept an eye out for by tools like the Data Race 
Detector from the Go Project. Race situations provide more significant 
issues and are more strongly related to application semantics. 

Race Condition in Producer and Consumer Problem 

The Race Condition usually occurs in the case of Producer and Consumer 
Problem. This Producer and Consumer Problem is the biggest example for 
the Race Condition which has occurred in Operating Systems. 

Let us know what is Producer and Consumer Problem. 

Producer and Consumer Problem 



The Producer and Consumer problem is another name for Bound Buffer 
Problem. In this issue, there are n slots in a buffer, and each slot may hold 
one data unit. Producer and Consumer are the two operations that are 
using the buffer. The Producer and Consumer problem comes under the 
category of Classical Problems of Synchronization. 

Here, Producer tries to create new data or may change the existing data. 

The Consumer tries to read the data only. It does not try to alter the already 
present data. 

There are two cases in this Producer and Consumer Problem. Let us 
explain these two cases with the help of Producer Threads and Consumer 
Threads. 

The two cases are: 

1. The Consumer Threads are working faster than Producer Threads 

Here, in this scenario there would be fast reading of data, but the change in 
data as expected by the computer is not achieved. 

Example: 

We have just deposited an amount of Two Thousand Two Hundred and 
Twenty Two Rupees (2, 222) in out Bank Account today. We wanted to 
draw Two Thousand Rupees (2, 000) from the bank on the same day after 
six hours of depositing money. Our Previous Balance before depositing 
Two Thousand Two Hundred and Twenty Two Rupees (2, 222) was Fifteen 
Hundred Rupees. 

Now, as the Producer Threads are slow, the Account Balance was not 
updated to Three Thousand Seven Hundred and Twenty Two Rupees 
(1500 + 2222 = 3722). 

The Account Balance is Fifteen Hundred only now. So, if we draw money 
the cash would not be updated and we cannot draw Two Thousand from 
the bank. Because of The Consumer Threads are working faster than 
Producer Threads Scenario we are facing this problem. 

2. The Producer Threads are working faster than Consumer Threads 



Here, in this scenario we are reading the data in the computer, suddenly 
the values of the data gets changed during the process of reading of data. 


	Notes of Unit-3
	Race Condition in Operating Systems (OS)
	Multi Threading in Operating Systems (OS)
	Race Condition in Operating Systems (OS)
	Race Condition in Multi Threading Scenario
	Race Condition in Multi Processing Scenario
	Race Condition in Critical Section Area Problem

	Examples of Race Condition:
	Example 1: Tube Light ON and OFF

	Race Conditions Identification or Detection in Operating Systems (OS)
	Race Condition in Producer and Consumer Problem



